Don't miss the piglix.com special BONUS offer during our Beta-test period. The next 100 new Registered Users (from a unique IP address), to post at least five (5) piglix, will receive 1,000 extra sign-up points (eventually exchangeable for crypto-currency)!

* * * * *    Free piglix.com Launch Promotions    * * * * *

  • Free Ads! if you are a small business with annual revenues of less than $1M - piglix.com will place your ads free of charge for up to one year! ... read more

  • $2,000 in free prizes! piglix.com is giving away ten (10) Meccano Erector sets, retail at $200 each, that build a motorized Ferris Wheel (or one of 22 other models) ... see details

Nylon


Nylon is a generic designation for a family of synthetic polymers, more specifically aliphatic or semi-aromatic polyamides. They can be melt-processed into fibers, films or shapes. The first example of nylon (nylon 6,6) was produced on February 28, 1935, by Wallace Carothers at DuPont's research facility at the DuPont Experimental Station. Nylon polymers have found significant commercial applications in fibers (apparel, flooring and rubber reinforcement), in shapes (molded parts for cars, electrical equipment, etc.), and in films (mostly for food packaging).

Nylon is a thermoplastic, silky material, first used commercially in a nylon-bristled toothbrush (1938), followed more famously by women's ("nylons"; 1940) after being introduced as a fabric at the 1939 New York World's Fair. Nylon is made of repeating units linked by peptide bonds and is a type of polyamide and is frequently referred to as such. Nylon was the first commercially successful synthetic thermoplastic polymer. Commercially, nylon polymer is made by reacting monomers which are either lactams, acid/amines or stoichiometric mixtures of diamines (-NH2) and diacids (-COOH). Mixtures of these can be polymerized together to make copolymers. Nylon polymers can be mixed with a wide variety of additives to achieve many different property variations.

Nylon was intended to be a synthetic replacement for silk and substituted for it in many different products after silk became scarce during World War II. It replaced silk in military applications such as parachutes and flak vests, and was used in many types of vehicle tires.


Monomer Polymer
caprolactam 6
11-aminoundecanoic acid 11
ω-aminolauric acid 12
Putrescine MPMD HMD MXD Nonanediamine Decanediamine Dodecanediamine bis(para-aminocyclohexyl)methane trimethylhexamethylenediamine
Adipic acid 46 D6 66 MXD6
Sebacic acid 410 610 1010
Dodecanedioic acid 612 1212 PACM12
Terephthalic acid 4T DT 6T 9T 10T 12T TMDT
Isophthalic acid DI 6I

Amide hydrolysis.svg
  • homopolymers :
  • copolymers :
    • PA 6/66 : [NH-(CH2)6−NH−CO−(CH2)4−CO]n−[NH−(CH2)5−CO]m made from caprolactam, hexamethylenediamine and adipic acid ;
    • PA 66/610 : [NH−(CH2)6−NH−CO−(CH2)4−CO]n−[NH−(CH2)6−NH−CO−(CH2)8−CO]m made from hexamethylenediamine, adipic acid and sebacic acid.
  • PA 6/66 : [NH-(CH2)6−NH−CO−(CH2)4−CO]n−[NH−(CH2)5−CO]m made from caprolactam, hexamethylenediamine and adipic acid ;
  • PA 66/610 : [NH−(CH2)6−NH−CO−(CH2)4−CO]n−[NH−(CH2)6−NH−CO−(CH2)8−CO]m made from hexamethylenediamine, adipic acid and sebacic acid.
  • PA6 Lanxess Durethan B
  • PA11 Arkema Rilsan
  • PA12 Evonik Vestamid L
  • PA46 DSM Stanyl
  • PA410 DSM Ecopaxx
  • PA4T DSM Four Tii
  • PA66 DuPont Zytel
  • PA6/66 DuPont Zytel)
  • PA6/6T BASF Ultramid T)
  • PA6I/6T DuPont Selar PA
  • PA66/6T DuPont Zytel HTN)
  • PA12/MACMI EMS Grilamid TR)
  • semi-crystalline:
    • high crystallinity: PA46 and PA66;
    • low crystallinity: PAMXD6 made from m-xylylenediamine and adipic acid;
  • amorphous: PA6I made from hexamethylenediamine and isophthalic acid.
  • high crystallinity: PA46 and PA66;
  • low crystallinity: PAMXD6 made from m-xylylenediamine and adipic acid;
  • Pleats and creases can be heat-set at higher temperatures
  • More compact molecular structure
  • Better weathering properties; better sunlight resistance
  • Softer "Hand"
  • High melting point (256 °C/492.8 °F)
  • Superior colorfastness
  • Excellent abrasion resistance
  • Variation of luster: nylon has the ability to be very lustrous, semilustrous or dull.
  • Durability: its high tenacity fibers are used for seatbelts, tire cords, ballistic cloth and other uses.
  • High elongation
  • Excellent abrasion resistance
  • Highly resilient (nylon fabrics are heat-set)
  • Paved the way for easy-care garments
  • High resistance to insects, fungi, animals, as well as molds, mildew, rot and many chemicals
  • Used in carpets and nylon stockings
  • Melts instead of burning
  • Used in many military applications
  • Good specific strength
  • Transparent to infrared light (−12 dB)
  • Textiles by Sara J. Kadolph,
  • Kohan, Melvin I. (1995). Nylon Plastics Handbook. Hanser/Gardner Publications.
...
Wikipedia

1,000 EXTRA POINTS!

Don't forget! that as one of our early users, you are eligible to receive the 1,000 point bonus as soon as you have created five (5) acceptable piglix.

...