Names | |
---|---|
IUPAC name
Diphosgene
|
|
Other names
trichloromethyl chloroformate
|
|
Identifiers | |
503-38-8 | |
3D model (Jmol) | Interactive image |
ChemSpider | 21154424 |
ECHA InfoCard | 100.007.242 |
RTECS number | LQ7350000 |
|
|
|
|
Properties | |
C2Cl4O2 | |
Molar mass | 197.82 g/mol |
Appearance | liquid at room temperature |
Density | 1.65 g/cm3 |
Melting point | −57 °C (−71 °F; 216 K) |
Boiling point | 128 °C (262 °F; 401 K) |
insol. | |
Hazards | |
Main hazards | toxic |
R-phrases | 26/28-34 |
S-phrases | 26-28-36/37/39-45 |
Flash point | 32 °C (90 °F; 305 K) |
Related compounds | |
Related compounds
|
COCl2, Cl2 |
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
|
|
what is ?) | (|
Infobox references | |
Diphosgene is a chemical compound with the formula ClCO2CCl3. This colorless liquid is a valuable reagent in the synthesis of organic compounds. Diphosgene is related to phosgene and has comparable toxicity, but is more conveniently handled because it is a liquid, whereas phosgene is a gas.
Diphosgene is prepared by radical chlorination of methyl chloroformate under UV light:
Another method is the radical chlorination of methyl formate:
Diphosgene converts to phosgene upon heating or upon catalysis with charcoal. It is thus useful for reactions traditionally relying on phosgene. For example, it convert amines into isocyanates, secondary amines into carbamoyl chlorides, carboxylic acids into acid chlorides, and formamides into isocyanides. Diphosgene serves as a source of two equivalents of phosgene:
With α-amino acids diphosgene gives the acid chloride-isocyanates, OCNCHRCOCl, or N-carboxy-amino acid anhydrides depending on the conditions.
It hydrolyzes to release HCl in humid air.
Diphosgene is used in some laboratory preparations because it is easier to handle than phosgene.
Diphosgene was originally developed as a pulmonary agent for chemical warfare, a few months after the first use of phosgene. It was used as a poison gas in artillery shells by Germany during World War I. The first recorded battlefield use was in May 1916. Diphosgene was developed because the vapors could destroy the filters in gas masks in use at the time.