*** Welcome to piglix ***

Differential scanning calorimeter

Differential scanning calorimetry
Inside DSC small.jpg
Differential scanning calorimeter
Acronym DSC
Classification Thermal analysis
Manufacturers Linseis Thermal Analysis, Mettler Toledo, Netzsch, Shimadzu, PerkinElmer, Setaram Instrumentation, TA Instruments, Microcal/Malvern Instruments, wsk Mess- und Datentechnik GmbH
Other techniques
Related Isothermal microcalorimetry
Isothermal titration calorimetry
Dynamic mechanical analysis
Thermomechanical analysis
Thermogravimetric analysis
Differential thermal analysis
Dielectric thermal analysis

Differential scanning calorimetry, or DSC, is a thermoanalytical technique in which the difference in the amount of heat required to increase the temperature of a sample and reference is measured as a function of temperature. Both the sample and reference are maintained at nearly the same temperature throughout the experiment. Generally, the temperature program for a DSC analysis is designed such that the sample holder temperature increases linearly as a function of time. The reference sample should have a well-defined heat capacity over the range of temperatures to be scanned.

The technique was developed by E. S. Watson and M. J. O'Neill in 1962, and introduced commercially at the 1963 Pittsburgh Conference on Analytical Chemistry and Applied Spectroscopy. The first adiabatic differential scanning calorimeter that could be used in biochemistry was developed by P. L. Privalov and D. R. Monaselidze in 1964 at Institute of Physics in Tbilisi, Georgia. The term DSC was coined to describe this instrument, which measures energy directly and allows precise measurements of heat capacity.

Types of DSC:

The basic principle underlying this technique is that when the sample undergoes a physical transformation such as phase transitions, more or less heat will need to flow to it than the reference to maintain both at the same temperature. Whether less or more heat must flow to the sample depends on whether the process is exothermic or endothermic. For example, as a solid sample melts to a liquid, it will require more heat flowing to the sample to increase its temperature at the same rate as the reference. This is due to the absorption of heat by the sample as it undergoes the endothermic phase transition from solid to liquid. Likewise, as the sample undergoes exothermic processes (such as crystallization) less heat is required to raise the sample temperature. By observing the difference in heat flow between the sample and reference, differential scanning calorimeters are able to measure the amount of heat absorbed or released during such transitions. DSC may also be used to observe more subtle physical changes, such as glass transitions. It is widely used in industrial settings as a quality control instrument due to its applicability in evaluating sample purity and for studying polymer curing.


...
Wikipedia

...