*** Welcome to piglix ***

Heat


In physics, heat is that amount of energy flowing from one body to another spontaneously due to their temperature difference, or by any means other than through work or the transfer of matter. The transfer can be by contact between the source and the destination body, as in conduction; or by radiation between remote bodies; or by conduction and radiation through a thick solid wall; or by way of an intermediate fluid body, as in convective circulation; or by a combination of these.

Because heat (like work) represents a quantity of energy being transferred between two bodies by certain processes, neither body "has" a definite amount of heat (much like a body in itself doesn't "have" work); in contrast, a body indeed has properties (state functions) such as temperature and internal energy. Thus, energy exchanged as heat during a given process changes the (internal) energy of each body by equal and opposite amounts.

While heat flows spontaneously from hot to cold, it is possible to construct a heat pump or refrigeration system that does work to increase the difference in temperature between two systems. Conversely, a heat engine reduces an existing temperature difference to do work on another system.

Historically, many energy units for measurement of heat have been used. The standards-based unit in the International System of Units (SI) is the joule (J). Heat is measured by its effect on the states of interacting bodies, for example, by the amount of ice melted or a change in temperature. The quantification of heat via the temperature change of a body is called calorimetry, and is widely used in practice. In calorimetry, sensible heat is defined with respect to a specific chosen state variable of the system, such as pressure or volume. Sensible heat causes a change of the temperature of the system while leaving the chosen state variable unchanged. Heat transfer that occurs at a constant system temperature but changes the state variable is called latent heat with respect to the variable. For infinitesimal changes, the total incremental heat transfer is then the sum of the latent and sensible heat.


...
Wikipedia

...