Structural isomerism, or constitutional isomerism (per IUPAC), is a form of isomerism in which molecules with the same molecular formula have different bonding patterns and atomic organization, as opposed to stereoisomerism, in which molecular bonds are always in the same order and only spatial arrangement differs. There are multiple synonyms for constitutional isomers.
Three categories of constitutional isomers are skeletal, positional, and functional isomers. Positional isomers are also called regioisomers.
In chain isomerism, or skeletal isomerism, components of the (usually carbon) skeleton are distinctly re-ordered to create different structures. Pentane exists as three isomers: n-pentane (often called simply "pentane"), isopentane (2-methylbutane) and neopentane (dimethylpropane).
In position isomerism (regioisomerism) a functional group or other substituent changes position on a parent structure. In the table below, the hydroxyl group can occupy three different positions on an n-pentane chain forming three different compounds.
Many aromatic isomers exist because substituents can be positioned on different parts of the benzene ring. Only one isomer of phenol or hydroxybenzene exists but cresol or methylphenol has three isomers where the additional methyl group can be placed on three different positions on the ring. Xylenol has one hydroxyl group and two methyl groups and a total of 6 isomers exist.
Functional isomers are structural isomers that have the same molecular formula (that is, the same number of atoms of the same elements), but the atoms are connected in different ways so that the groupings are dissimilar. These groups of atoms are called functional groups, functionalities. Another way to say this is that two compounds with the same molecular formula, but different functional groups, are functional isomers.