*** Welcome to piglix ***

Communications-based train control


Communications-based train control (CBTC) is a railway signaling system that makes use of the telecommunications between the train and track equipment for the traffic management and infrastructure control. By means of the CBTC systems, the exact position of a train is known more accurately than with the traditional signaling systems. This results in a more efficient and safe way to manage the railway traffic. Metros (and other railway systems) are able to improve headways while maintaining or even improving safety.

A CBTC system is a "continuous, automatic train control system utilizing high-resolution train location determination, independent from track circuits; continuous, high-capacity, bidirectional train-to-wayside data communications; and trainborne and wayside processors capable of implementing Automatic Train Protection (ATP) functions, as well as optional Automatic Train Operation (ATO) and Automatic Train Supervision (ATS) functions.", as defined in the IEEE 1474 standard.

The main objective of CBTC is to increase capacity by reducing the time interval (headway) between trains.

Traditional signalling systems detect trains in discrete sections of the track called 'blocks', each protected by signals that prevent a train entering an occupied block. Since every block is a fixed section of track, these systems are referred to as fixed block systems.

In a moving block CBTC system the protected section for each train is a "block" that moves with and trails behind it, and made to the system as a whole by continuous communication of the train's exact position via some kind of communication like such as radio or inductive loop.

As a result, Bombardier opened the world's first radio-based CBTC system at San Francisco airport's Automated People Mover (APM) in February 2003. A few months later, in June 2003, Alstom introduced the railway application of its radio technology on the Singapore North East Line. Previously, CBTC has its former origins in the loop based systems developed by Alcatel SEL (now Thales) for the Bombardier Automated Rapid Transit (ART) systems in Canada during the mid-1980s. These systems, which were also referred to as Transmission-Based Train Control (TBTC), made use of inductive loop transmission techniques for track to train communication, introducing an alternative to track circuit based communication. This technology, operating in the 30–60 kHz frequency range to communicate trains and wayside equipment, was widely adopted by the metro operators in spite of some electromagnetic compatibility (EMC) issues, as well as other installation and maintenance concerns. See SelTrac for further information regarding Transmission-Based-Train-Control.


...
Wikipedia

...