*** Welcome to piglix ***

Common ion effect


The common ion effect is responsible for the reduction in the solubility of an ionic precipitate when a soluble compound containing one of the ions of the precipitate is added to the solution in equilibrium with the precipitate. It states that if the concentration of any one of the ions is increased, then, according to Le Chatelier's principle, some of the ions in excess should be removed from solution, by combining with the oppositely charged ions. Some of the salt will be precipitated until the ion product is equal to the solubility product. In short, the common ion effect is the suppression of the degree of dissociation of a weak electrolyte containing a common ion.

The solubility of a sparingly soluble salt is reduced in a solution that contains an ion in common with that salt. For instance, the solubility of silver chloride in water is reduced if a solution of sodium chloride is added to a suspension of silver chloride in water.

A practical example used very widely in areas drawing drinking water from chalk or limestone aquifers is the addition of sodium carbonate to the raw water to reduce the hardness of the water. In the water treatment process, highly soluble sodium carbonate salt is added to precipitate out sparingly soluble calcium carbonate. The very pure and finely divided precipitate of calcium carbonate that is generated is a valuable by-product used in the manufacture of toothpaste.

The salting out process used in the manufacture of soaps benefits from the common ion effect. Soaps are sodium salts of fatty acids. Addition of sodium chloride reduces the solubility of the soap salts. The soaps precipitate due to a combination of common ion effect and increased ionic strength.


...
Wikipedia

...