*** Welcome to piglix ***

Chlorosulfonyl isocyanate

Chlorosulfonyl isocyanate
Chlorosulfonyl isocyanate
Chlorosulfonyl isocyanate
Names
IUPAC name
Chlorosulfonyl isocyanate
Other names
N-Carbonylsulfamyl chloride
Chloropyrosulfonyl isocyanate
Sulfuryl chloride isocyanate
Identifiers
3D model (JSmol)
ChemSpider
ECHA InfoCard 100.013.378
PubChem CID
Properties
CNClO3S
Molar mass 141.53 g/mol
Appearance colorless liquid
Density 1.626 g/cm3
Melting point −44 °C (−47 °F; 229 K)
Boiling point 107 °C (225 °F; 380 K)
decomposition
Solubility in other solvents Chlorocarbons
MeCN
1.447
Structure
tetrahedral at S
Hazards
Main hazards toxic, corrosive, flammable,
reacts violently with water
Safety data sheet "External MSDS"
R-phrases (outdated) R14 R20 R24/25 R29 R34 R42/43
S-phrases (outdated) (S1/2) S8 S24 S26 S30 S36/37/39 S38 S45
NFPA 704
Flammability code 1: Must be pre-heated before ignition can occur. Flash point over 93 °C (200 °F). E.g., canola oil Health code 3: Short exposure could cause serious temporary or residual injury. E.g., chlorine gas Reactivity code 2: Undergoes violent chemical change at elevated temperatures and pressures, reacts violently with water, or may form explosive mixtures with water. E.g., phosphorus Special hazard W: Reacts with water in an unusual or dangerous manner. E.g., cesium, sodiumNFPA 704 four-colored diamond
Related compounds
Related compounds
Thionyl chloride
Cyanogen bromide
Phosphoryl chloride
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
YesY  (what is YesYN ?)
Infobox references

Chlorosulfonyl isocyanate is the chemical compound ClSO2NCO, known as CSI. This compound is a versatile reagent in organic synthesis.

CSI is prepared by treating cyanogen chloride with sulfur trioxide, the product being distilled directly from the reaction mixture.

In this transformation, both the carbon and the nitrogen termini of CN are functionalized.

The structure of CSI is represented as ClS(O)2-N=C=O. It consists of two electron-withdrawing components, the chlorosulfonyl group (SO2Cl) and the isocyanate group (-N=C=O). Because of its resulting electrophilicity, the use of CSI in chemical synthesis requires relatively inert solvents such as chlorocarbons, acetonitrile, and ethers.

The molecule has two electrophilic sites, the carbon and the S(VI) center.

CSI has been employed for the preparation of β-lactams, some of which are medicinally important. Thus, alkenes undergo a [2+2]-cycloaddition to give the sulfonamide. The SO2Cl group can be removed simply by hydrolysis, leaving the secondary amide. Other reactions of CSI:

CSI is toxic, corrosive and reacts violently with water. It cannot be stored in glass-stoppered flasks, requiring instead polyethylene bottles.


...
Wikipedia

...