Identifiers | |
---|---|
3D model (JSmol)
|
|
ChemSpider | |
ECHA InfoCard | 100.154.457 |
PubChem CID
|
|
|
|
|
|
Properties | |
C41H35ClP2Ru | |
Molar mass | 726.19 g/mol |
Appearance | Orange solid |
Melting point | 135 °C (275 °F; 408 K) |
Insoluble | |
Hazards | |
GHS pictograms | |
GHS signal word | Warning |
H302, H312, H315, H319, H332, H335 | |
P261, P264, P270, P271, P280, P301+312, P302+352, P304+312, P304+340, P305+351+338, P312, P321, P322, P330, P332+313, P337+313, P362, P363, P403+233, P405, P501 | |
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
|
|
what is ?) | (|
Infobox references | |
Chloro(cyclopentadienyl)bis(triphenylphosphine)ruthenium is the organoruthenium half-sandwich compound with formula RuCl(PPh3)2(C5H5). It as an air-stable orange crystalline solid that is used in a variety of organometallic synthetic and catalytic transformations. The compound has idealized Cs symmetry. It is soluble in chloroform, dichloromethane, and acetone.
Chloro(cyclopentadienyl)bis(triphenylphosphine)ruthenium was first reported in 1969 when it was prepared by reacting dichlorotris(triphenylphosphine)ruthenium(II) with cyclopentadiene.
It is prepared by heating a mixture of ruthenium(III) chloride, triphenylphosphine, and cyclopentadiene in ethanol.
Chloro(cyclopentadienyl)bis(triphenylphosphine)ruthenium(II) undergoes a variety of reactions often by involving substitution of the chloride. With phenylacetylene it gives the phenyl vinylidene complex:
Displacement of one PPh3 by carbon monoxide affords a chiral compound.
The compound can also be converted into the hydride:
A related complex is tris(acetonitrile)cyclopentadienylruthenium hexafluorophosphate, which has three labile MeCN ligands.