Organisation | European Southern Observatory, National Science Foundation, National Institutes of Natural Sciences, Japan |
---|---|
Location(s) | Llano de Chajnantor Observatory , Chile |
Coordinates | 23°01′09″S 67°45′12″W / 23.0193°S 67.7532°WCoordinates: 23°01′09″S 67°45′12″W / 23.0193°S 67.7532°W |
Altitude | 5,058.7 m (16,597 ft) |
Telescope style | radio telescope, |
Website | www |
[]
|
The Atacama Large Millimeter Array (ALMA) is an astronomical interferometer of radio telescopes in the Atacama desert of northern Chile. Since a high and dry site is crucial to millimeter and submillimeter wavelength operations, the array has been constructed on the Chajnantor plateau at 5,000 metres (16,000 ft) altitude, near Llano de Chajnantor Observatory and Atacama Pathfinder Experiment. Consisting of 66 12-metre (39 ft) and 7-metre (23 ft) diameter radio telescopes observing at millimeter and submillimeter wavelengths, ALMA is expected to provide insight on star birth during the early universe and detailed imaging of local star and planet formation.
ALMA is an international partnership among Europe, the United States, Canada, Japan, South Korea, Taiwan, and Chile. Costing about US$1.4 billion, it is the most expensive ground-based telescope in operation. ALMA began scientific observations in the second half of 2011 and the first images were released to the press on 3 October 2011. The array has been fully operational since March 2013.
The initial ALMA array is composed of 66 high-precision antennas, and operate at wavelengths of 0.3 to 9.6 mm. The array has much higher sensitivity and higher resolution than earlier submillimeter telescopes such as the single-dish James Clerk Maxwell Telescope or existing interferometer networks such as the Submillimeter Array or the Institut de Radio Astronomie Millimétrique (IRAM) Plateau de Bure facility.