*** Welcome to piglix ***

Antimony telluride

Antimony telluride
Bi2Te3-Sb2Te3-TEM2.jpg
Electron micrograph of a seamless Bi2Te3/Sb2Te3heterojunction and its atomic model (blue: Bi, green: Sb, red: Te)
Names
Other names
antimony telluride, antimony(III) telluride, antimony telluride, diantimony tritelluride
Identifiers
3D model (JSmol)
ChemSpider
ECHA InfoCard 100.014.074
PubChem CID
Properties
Sb2Te3
Molar mass 626.32 g·mol−1
Appearance grey solid
Density 6.50 g cm−3
Melting point 620 °C (1,148 °F; 893 K)
Band gap 0.21 eV
Thermal conductivity 1.65 W/(m·K) (308 K)
Structure
Trigonal, hR15
R3m, No. 166
a = 0.4262 nm, c = 3.0435 nm
3
Hazards
US health exposure limits (NIOSH):
PEL (Permissible)
TWA 0.5 mg/m3 (as Sb)
REL (Recommended)
TWA 0.5 mg/m3 (as Sb)
Related compounds
Other anions
Sb2O3
Sb2S3
Sb2Se3
Other cations
As2Te3
Bi2Te3
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
YesY  (what is YesYN ?)
Infobox references

Antimony telluride is an inorganic compound with the chemical formula Sb2Te3. It is a grey crystalline solid with layered structure. Layers consist of two atomic sheets of antimony and three atomic sheets of tellurium and are held together by weak van der Waals forces. Sb2Te3 is a narrow-gap semiconductor with a band gap 0.21 eV; it is also a topological insulator, and thus exhibits thickness-dependent physical properties.

Antimony telluride can be formed by the reaction of antimony with tellurium at 500–900 °C.

Like other binary chalcogenides of antimony and bismuth, Sb2Te3 has been investigated for its semiconductor properties. It can be transformed into both n-type and p-type semiconductors by doping with an appropriate dopant.

Sb2Te3 forms the pseudobinary intermetallic system germanium-antimony-tellurium with germanium telluride, GeTe.

Like bismuth telluride, Bi2Te3, antimony telluride has a large thermoelectric effect and is therefore used in solid state refrigerators.


...
Wikipedia

...