*** Welcome to piglix ***

Antimony trioxide

Antimony(III) oxide
Antimony(III) oxide
Names
IUPAC name
Antimony(III) oxide
Other names
Antimony sesquioxide
Antimonous oxide
Flowers of Antimony
Identifiers
3D model (Jmol)
ChemSpider
ECHA InfoCard 100.013.796
KEGG
RTECS number CC5650000
UNII
Properties
Sb2O3
Molar mass 291.518 g/mol
Appearance white solid
Odor odorless
Density 5.2 g/cm3, α-form
5.67 g/cm3 β-form
Melting point 656 °C (1,213 °F; 929 K)
Boiling point 1,425 °C (2,597 °F; 1,698 K) (sublimes)
Dissolved concentration of 370 ± 37 µg/L was obtained with a loading of 10 mg/L after 7 days of exposure. Temperature varied between 20.8°C (t=0; start of the test) and 22.9°C
Solubility soluble in acid
-69.4·10−6 cm3/mol
2.087, α-form
2.35, β-form
Structure
cubic (α)<570 °C
orthorhombic (β) >570 °C
pyramidal
zero
Hazards
Safety data sheet See: data page
Harmful (Xn)
Carc. Cat. 2 (H351)
R-phrases R40
S-phrases (S2), S22, S36/37
NFPA 704
Flammability code 0: Will not burn. E.g., water Health code 2: Intense or continued but not chronic exposure could cause temporary incapacitation or possible residual injury. E.g., chloroform Reactivity code 0: Normally stable, even under fire exposure conditions, and is not reactive with water. E.g., liquid nitrogen Special hazards (white): no codeNFPA 704 four-colored diamond
Lethal dose or concentration (LD, LC):
LD50 (median dose)
7000 mg/kg, oral (rat)
US health exposure limits (NIOSH):
PEL (Permissible)
TWA 0.5 mg/m3 (as Sb)
REL (Recommended)
TWA 0.5 mg/m3 (as Sb)
Related compounds
Other anions
Antimony trisulfide
Other cations
Bismuth trioxide
Related compounds
Diantimony tetraoxide
Antimony pentoxide
Supplementary data page
Refractive index (n),
Dielectric constantr), etc.
Thermodynamic
data
Phase behaviour
solid–liquid–gas
UV, IR, NMR, MS
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
YesY  (what is YesYN ?)
Infobox references

Antimony(III) oxide is the inorganic compound with the formula Sb2O3. It is the most important commercial compound of antimony. It is found in nature as the minerals valentinite and senarmontite. Like most polymeric oxides, Sb2O3 dissolves in aqueous solutions with hydrolysis.

Global production of antimony(III) oxide in 2012 was 130,000 tonnes, an increase from 112,600 tonnes in 2002. China produces the largest share followed by US/Mexico, Europe, Japan and South Africa and other countries (2%).

As of 2010, antimony(III) oxide was produced at four sites in EU27. It is produced via two routes, re-volatilizing of crude antimony(III) oxide and by oxidation of antimony metal. Oxidation of antimony metal dominates in Europe. Several processes for the production of crude antimony(III) oxide or metallic antimony from virgin material. The choice of process depends on the composition of the ore and other factors. Typical steps include mining, crushing and grinding of ore, sometimes followed by froth flotation and separation of the metal using pyrometallurgical processes (smelting or roasting) or in a few cases (e.g. when the ore is rich in precious metals) by hydrometallurgical processes. These steps do not take place in the EU but closer to the mining location.

Step 1) Crude stibnite is oxidized to crude antimony(III) oxide using furnaces operating at approximately 500 to 1,000 °C. The reaction is the following:

Step 2) The crude antimony(III) oxide is purified by sublimation.

Antimony metal is oxidized to antimony(III) oxide in furnaces. The reaction is exothermic. Antimony(III) oxide is formed through sublimation and recovered in bag filters (bag house). The size of the formed particles is controlled by process conditions in furnace and gas flow. The reaction can be schematically described by:

Antimony(III) oxide is an amphoteric oxide, it dissolves in aqueous sodium hydroxide solution to give the meta-antimonite NaSbO2, which can be isolated as the trihydrate. Antimony(III) oxide also dissolves in concentrated mineral acids to give the corresponding salts, which hydrolyzes upon dilution with water. With nitric acid, the trioxide is oxidized to antimony(V) oxide.


...
Wikipedia

...