In coordination chemistry, metal ammine complexes are metal complexes containing at least one ammonia (NH3) ligand. "Ammine" is spelled this way due to historical reasons; in contrast, alkyl or aryl bearing ligands are spelt with a single "m". Almost all metal ions bind ammonia as a ligand, but the most prevalent examples of ammine complexes are for Cr(III), Co(III), Ni(II), Cu(II) as well as several platinum group metals.
Ammine complexes played a major role in the development of coordination chemistry, specifically determination of the stereochemistry and structure. They are easily prepared, and the metal-nitrogen ratio can be determined by elemental analysis. One of the first ammine complexes to be described was "Magnus' green salt" [Pt(NH3)4][PtCl4]. Relying mainly on the ammine complexes, Alfred Werner developed his Nobel Prize-winning concept of the structure of coordination compounds (see Figure).
Platinum group metals form many ammine complexes. Pentaamine(dinitrogen)ruthenium(II) and the Creutz–Taube complex are well studied examples or historic significance. The complex cis-PtCl2(NH3)2, under the name Cisplatin, was a revolutionary anticancer drug. Pentamminerhodium chloride ([RhCl(NH3)5]Cl2) is an intermediate in the purification of rhodium from its ores.
Carboplatin, a widely used anticancer drug.
Pentamminerhodium chloride, featuring one of many pentammine halide cations.
Pentaamine(dinitrogen)ruthenium(II) chloride, featuring the first metal dinitrogen complex.