Alpha-keratin, or α-keratin, is a type of keratin found in mammals. This protein is the primary component in hairs, horns, nails and the epidermis layer of the skin. α-keratin is a fibrous structural protein, meaning that it is made up of amino acids that form a repeating secondary structure. The secondary structure of α-keratin is very similar to that of a traditional protein α-helix and forms a coiled coil. Due to its tightly wound structure, it can function as one of the strongest biological materials and has various uses in mammals, from predatory claws to hair for warmth. α-keratin is synthesized through protein biosynthesis, utilizing transcription and translation, but as the cell matures and is full of α-keratin, it dies, creating a strong non-vascular unit of keratinized tissue.
α-keratin is a polypeptide chain, typically high in alanine, leucine, arginine, and cysteine, that forms a right-handed α-helix. Two of these polypeptide chains twist together to form a left-handed helical structure known as a coiled coil. These coiled coil dimers, approximately 45 nm long, are bonded together with disulfide bonds, utilizing the many cysteine amino acids found in α-keratins. The dimers then align, their termini bonding with the termini of other dimers, and two of these new chains bond length-wise, all through disulfide bonds, to form a protofilament. Two protofilaments aggregate to form a protofibril, and four protofibrils polymerize to form the intermediate filament (IF). The IF is the basic subunit of α-keratins. These IFs are able to condense into a super-coil formation of about 7 nm in diameter, and can be type I, acidic, or type II, basic. The IFs are finally embedded in a keratin matrix that either is high in cysteine or glycine, tyrosine and phenylalanine residues. The different types, alignments, and matrices of these IFs account for the large variation in α-keratin structures found in mammals.