*** Welcome to piglix ***

Aircraft Reactor Experiment


The Aircraft Nuclear Propulsion (ANP) program and the preceding Nuclear Energy for the Propulsion of Aircraft (NEPA) project worked to develop a nuclear propulsion system for aircraft. The United States Army Air Forces initiated Project NEPA on May 28, 1946. After funding of $10 million in 1947, NEPA operated until May 1951, when the project was transferred to the joint Atomic Energy Commission (AEC)/USAF ANP. The USAF pursued two different systems for nuclear-powered jet engines, the Direct Air Cycle concept, which was developed by General Electric, and Indirect Air Cycle, which was assigned to Pratt & Whitney. The program was intended to develop and test the Convair X-6, but was cancelled in 1961 before that aircraft was built.

Direct cycle nuclear engines would resemble a conventional jet engine, except that there would be no combustion chambers. The air gained from the compressor section would be sent to a plenum that directs the air into the nuclear reactor core. An exchange takes place where the reactor is cooled, but it then heats up the same air and sends it to another plenum. The second plenum directs the air into a turbine, which sends it out the exhaust. The end result is that instead of using jet fuel, an aircraft could rely on nuclear reactions for power.

The General Electric program, which was based at Evendale, Ohio, was pursued because of its advantages in simplicity, reliability, suitability and quick start ability. Conventional jet engine compressor and turbine sections were used, with the compressed air run through the reactor to be heated by it before being exhausted through the turbine.

The United States Aircraft Reactor Experiment (ARE) was a 2.5 MW thermal nuclear reactor experiment designed to attain a high power density for use as an engine in a nuclear-powered bomber. It used the molten fluoride salt NaF-ZrF4-UF4 (53-41-6 mol%) as fuel, was moderated by beryllium oxide (BeO), used liquid sodium as a secondary coolant and had a peak temperature of 860 °C. It operated for a 1000-hour cycle in 1954. It was the first molten salt reactor. Work on this project in the United States stopped after intercontinental ballistic missiles made it obsolete. The designs for its engines can currently be viewed at the Experimental Breeder Reactor I memorial building at the Idaho National Laboratory.


...
Wikipedia

...