A molten salt reactor (MSR) is a class of generation IV nuclear fission reactor in which the primary nuclear reactor coolant, or even the fuel itself, is a molten salt mixture. MSRs can run at higher temperatures than water-cooled reactors for a higher thermodynamic efficiency, while staying at low vapour pressure.
The nuclear fuel may be solid or dissolved in the coolant. In many designs the nuclear fuel dissolved in the coolant is uranium tetrafluoride (UF4). The fluid becomes critical in a graphite core that serves as the moderator. Some solid-fuel designs propose ceramic fuel dispersed in a graphite matrix, with the molten salt providing low pressure, high temperature cooling. The salts are much more efficient than compressed helium (another potential coolant in Generation IV reactor designs) at removing heat from the core, reducing the need for pumping and piping and reducing the core size.
The concept was established in the 1950s. The early Aircraft Reactor Experiment (1954) was primarily motivated by the small size that the design could provide, while the Molten-Salt Reactor Experiment (1965–1969) was a prototype for a thorium fuel cycle breeder reactor nuclear power plant. The increased research into Generation IV reactor designs included a renewed interest in the technology.
Extensive research into molten salt reactors started with the U.S. aircraft reactor experiment (ARE) in support of the U.S. Aircraft Nuclear Propulsion program. The ARE was a 2.5 MWth nuclear reactor experiment designed to attain a high energy density for use as an engine in a nuclear-powered bomber.