In abstract algebra, an element a of a ring R is called a left zero divisor if there exists a nonzero x such that ax = 0, or equivalently if the map from R to R that sends x to ax is not injective. Similarly, an element a of a ring is called a right zero divisor if there exists a nonzero y such that ya = 0. This is a partial case of divisibility in rings. An element that is a left or a right zero divisor is simply called a zero divisor. An element a that is both a left and a right zero divisor is called a two-sided zero divisor (the nonzero x such that ax = 0 may be different from the nonzero y such that ya = 0). If the ring is commutative, then the left and right zero divisors are the same.
An element of a ring that is not a zero divisor is called regular, or a non-zero-divisor. A zero divisor that is nonzero is called a nonzero zero divisor or a nontrivial zero divisor. If there are no nontrivial zero divisors in R, then R is a domain.
There is no need for a separate convention regarding the case a = 0, because the definition applies also in this case:
Such properties are needed in order to make the following general statements true:
Some references choose to exclude 0 as a zero divisor by convention, but then they must introduce exceptions in the two general statements just made.