*** Welcome to piglix ***

Domain (ring theory)


In mathematics, and more specifically in algebra, a domain is a nonzero ring in which ab = 0 implies a = 0 or b = 0. (Sometimes such a ring is said to "have the zero-product property.") Equivalently, a domain is a ring in which 0 is the only left zero divisor (or equivalently, the only right zero divisor). A commutative domain is called an integral domain. Mathematical literature contains multiple variants of the definition of "domain".

One way of proving that a ring is a domain is by exhibiting a filtration with special properties.

Theorem: If R is a filtered ring whose associated graded ring gr(R) is a domain, then R itself is a domain.

This theorem needs to be complemented by the analysis of the graded ring gr(R).

Suppose that G is a group and K is a field. Is the group ring R = K[G] a domain? The identity

shows that an element g of finite order n > 1 induces a zero divisor 1 − g in R. The zero divisor problem asks whether this is the only obstruction; in other words,

No counterexamples are known, but the problem remains open in general (as of 2007).

For many special classes of groups, the answer is affirmative. Farkas and Snider proved in 1976 that if G is a torsion-free polycyclic-by-finite group and char K = 0 then the group ring K[G] is a domain. Later (1980) Cliff removed the restriction on the characteristic of the field. In 1988, Kropholler, Linnell and Moody generalized these results to the case of torsion-free solvable and solvable-by-finite groups. Earlier (1965) work of Michel Lazard, whose importance was not appreciated by the specialists in the field for about 20 years, had dealt with the case where K is the ring of p-adic integers and G is the pth congruence subgroup of GL(n, Z).


...
Wikipedia

...