Names | |
---|---|
IUPAC name
Ytterbium(III) chloride
|
|
Identifiers | |
3D model (Jmol)
|
|
ChemSpider | |
ECHA InfoCard | 100.030.715 |
|
|
|
|
Properties | |
YbCl3 | |
Molar mass | 279.40 g/mol |
Appearance | White powder |
Density | 4.06 g/cm3 (solid) |
Melting point | 854 °C (1,569 °F; 1,127 K) |
Boiling point | 1,453 °C (2,647 °F; 1,726 K) |
0.17 g/mL (25 °C) | |
Structure | |
Monoclinic, mS16 | |
C12/m1, No. 12 | |
Related compounds | |
Other anions
|
Ytterbium(III) oxide |
Other cations
|
Terbium(III) chloride, Lutetium(III) chloride |
Supplementary data page | |
Refractive index (n), Dielectric constant (εr), etc. |
|
Thermodynamic
data |
Phase behaviour solid–liquid–gas |
UV, IR, NMR, MS | |
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
|
|
what is ?) | (|
Infobox references | |
Ytterbium(III) chloride (YbCl3) is an inorganic chemical compound. It reacts with NiCl2 to form a very effective catalyst for the reductive dehalogenation of aryl halides. It is poisonous if injected, and mildly toxic by ingestion. It is an experimental teratogen, known to irritate the skin and eyes. When heated to decomposition it emits toxic fumes of Cl−.
Ytterbium, a lanthanide series element, was discovered in 1878 by the Swiss chemist Jean-Charles Galissard de Marignac, who named the element after a town (Ytterby) in Sweden. The first synthesis of YbCl3 in the literature was that of Jan Hoogschagen in 1946. YbCl3 is now a commercially available source of Yb3+ ions and therefore of significant chemical interest.
The valence electron configuration of Yb+3 (from YbCl3) is 4f135s25p6, which has crucial implications for the chemical behaviour of Yb+3. Also, the size of Yb+3 governs its catalytic behaviour and biological applications. For example, while both Ce+3 and Yb+3 have a single unpaired f electron, Ce+3 is much larger than Yb+3 because lanthanides become much smaller with increasing effective nuclear charge as a consequence of the f electrons not being as well shielded as d electrons. This behavior is known as the lanthanide contraction. The small size of Yb+3 produces fast catalytic behavior and an atomic radius (0.99 Å) comparable to many biologically important ions.
The gas-phase thermodynamic properties of this chemical are difficult to determine because the chemical can disproportionate to form [YbCl6]−3 or dimerize. The Yb2Cl6 species was detected by electron impact (EI) mass spectrometry as (Yb2Cl5+). Additional complications in obtaining experimental data arise from the myriad of low-lying f-d and f-f electronic transitions. Despite these issues, the thermodynamic properties of YbCl3 have been obtained and the C3Vsymmetry group has been assigned based upon the four active infrared vibrations.