Names | |
---|---|
IUPAC name
2-[(2S,4aS,5aR,6R,6aS,7aR,8S,10aS,11aR,13aS,14aR,15aS,16aR,18S,19R,20aS,21aR,22aS,23aR,24aS,25aR,26aS,27aR,28aS,29aR)-6-Hydroxy-2-[(2R,3E)-2-hydroxy-5-methylene-3,7-octadien-2-yl]-5a,8,10a,11a,19-pentamethyl-3-methylene-18-(sulfooxy)octatriacontahydropyrano[2’’’,3’’’:5’’,6’’]pyrano[2’’,3’’:5’,6’]pyrano[2’,3’:5,6]pyrano[3,2-b]pyrano[2’’’’’,3’’’’’:5’’’’,6’’’’]pyrano[2’’’’,3’’’’:5’’’,6’’’]pyrano[2’’’,3’’’:5’’,6’’]pyrano[2’’,3’’:6’,7’]oxepino[2’,3’:5,6]pyrano[2,3-g]oxocin-19-yl]ethyl hydrogen sulfate
|
|
Identifiers | |
3D model (Jmol)
|
|
ChemSpider | |
PubChem CID
|
|
|
|
|
|
Properties | |
C55H82O21S2 | |
Molar mass | 1,143.36 g·mol−1 |
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
|
|
Infobox references | |
Yessotoxins are a group of lipophilic, sulfur bearing polyether toxins that are related to ciguatoxins. They are produced by a variety of dinoflagellates, most notably Lingulodinium polyedrum and Gonyaulax spinifera.
When the environmental conditions encourage the growth of YTX producing dinoflagellates, the toxin(s) bioaccumulate in edible tissues of bivalve molluscs, including mussels, scallops, and clams, thus allowing entry of YTX into the food chain.
The first YTX analog discovered, yessotoxin, was initially found in the scallop species Patinopecten yessoensis in the 1960s. Since then, numerous yessotoxin analogs have been isolated from shellfish and marine algae (including 45-hydroxyyessotoxin and carboxyyessotoxin).
Initially, scientists wrongly classified YTXs in the group of diarrhetic shellfish poisoning (DSP) toxins along the lines of okadaic acid and azaspiracids. These type of toxins can cause extreme gastrointestinal upset and accelerate cancer growth. Once scientists realized YTXs did not have the same toxicological mechanism of action as the other toxins (protein phosphatase inhibitors), they were given their own classification.
A large number of studies have been conducted to assess the potential toxicity of YTXs. To date none of these studies has highlighted any toxic effects of YTXs when they are present in humans. They have, however, found YTXs to have toxic effects in mice when the YTX had been administered by an intraperitoneal injection into the animal. The toxicicological effects encountered are similar to those seen for paralytic shellfish toxins, and include hepatotoxicity, cardiotoxicity, and neurotoxicity, with a YTX level of 100 µg/kg causing toxic effects. Limited toxic effects have been seen after oral administration of the toxin to animals. The mechanism by which YTX exerts a toxic effect is unknown and is currently being studied by a number of research groups. However, some recent studies suggest the mode of action may have something to do with altering calcium homeostasis.