Identifiers | |
---|---|
3D model (Jmol)
|
|
Abbreviations | AZA |
ChemSpider | |
ECHA InfoCard | 100.236.832 |
PubChem CID
|
|
|
|
|
|
Properties | |
C47H71NO12 | |
Molar mass | 842.07 g mol-1 |
Appearance | Colorless |
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
|
|
Infobox references | |
Azaspiracids (AZA) are a group of polycyclic ether marine algal toxins produced by the small dinoflagellate Azadinium spinosum that can accumulate in humans causing illnesses.
Azaspiracid was first identified in the 1990s following an outbreak of human illness in the Netherlands that was associated with ingestion of contaminated shellfish originating from Killary Harbour, Ireland. To date, over 20 AZA analogues have been identified in phytoplankton and shellfish. Over the last 15 years, AZAs have been reported in shellfish from many coastal regions of western Europe, Northern Africa, South America, and North America. In addition, AZAs have been found in Japanese sponges and Scandinavian crabs. Not surprisingly, the global distribution of AZAs appears to correspond to the apparent wide spread occurrence of Azadinium. Empircal evidence is now available that unambiguously demonstrates the accumulation of AZAs in shellfish via direct feeding on AZA-producing A. spinosum.
Azaspiracid is a phycotoxin that inhibits hERG voltage-gated potassium channels.
Unlike many other marine phycotoxins, little is known about the AZA toxin class. Similar to DSP toxins, human consumption of AZA-contaminated shellfish can result in severe acute symptoms that include nausea, vomiting, diarrhea, and stomach cramps. Azaspiracid has an EU established regulatory limit of 160 µg/kg. Within the United States, the FDA has established an action level for AZP of 0.16ppm (160 µg/kg) azaspiracid equivalents which is consistent with that currently employed in the EU. To date, six human azaspiracid poisoning (AZP) events have been confirmed, but it is quite possible, due to the similarity of symptoms observed for people with DSP or other types of food poisoning (e.g., bacterial enteritis), that many more undocumented events have occurred. Coincidently, each of the confirmed AZP events have been traced to contaminated Irish shellfish (M. edulis).
The first confirmed AZP event occurred in November 1995. Mussels harvested from Killary Harbour, Ireland were exported to The Netherlands, resulting in eight people falling ill with DSP-like symptoms of gastrointestinal illness, including nausea, vomiting, severe diarrhea, and stomach cramps. The absence of known DSP toxins okadaic acid and dinophysistoxin-2 led to the discovery and identification of a novel aeitological agent, temporarily called Killary Toxin-3 before being renamed to AZA1. Mussels collected from the same area five months after the event were shown to contain (in μg/g whole meat) AZA1 (1.14), AZA2 (0.23), and AZA3 (0.06).
In September/October 1997, as few as 10-12 AZA-contaminated mussels were consumed by individuals in the Arranmore Island region of Donegal, Ireland. At least 20-24 people were believed to have been exposed to AZAs in this event, but only eight sought medical attention. Symptoms included nausea, vomiting, and diarrhea for 2–5 days prior to full recovery. Analysis of the shellfish revealed five AZA analogues, AZA1-5, with most of the toxin concentrated in the digestive glands at levels exceeding 30 μg/g (estimated at 6 μg/g whole mussel meat). The AZAs persisted in the mussels at elevated levels for at least eight months.