*** Welcome to piglix ***

Weibull modulus


The Weibull modulus is a dimensionless parameter of the Weibull distribution which is used to describe variability in measured material strength of brittle materials.

For ceramics and other brittle materials, the maximum stress that a sample can be measured to withstand before failure may vary from specimen to specimen, even under identical testing conditions. This is related to the distribution of physical flaws present in the surface or body of the brittle specimen, since brittle failure processes originate at these weak points. When flaws are consistent and evenly distributed, samples will behave more uniformly than when flaws are clustered inconsistently. This must be taken into account when describing the strength of the material, so strength is best represented as a distribution of values rather than as one specific value. The Weibull modulus is a shape parameter for the Weibull distribution model which, in this case, maps the probability of failure of a component at varying stresses.

Consider strength measurements made on many small samples of a brittle ceramic material. If the measurements show little variation from sample to sample, the calculated Weibull modulus will be high and a single strength value would serve as a good description of the sample-to-sample performance. It may be concluded that its physical flaws, whether inherent to the material itself or resulting from the manufacturing process, are distributed uniformly throughout the material. If the measurements show high variation, the calculated Weibull modulus will be low; this reveals that flaws are clustered inconsistently and the measured strength will be generally weak and variable. Products made from components of low Weibull modulus will exhibit low reliability and their strengths will be broadly distributed.

Test procedures for determining the Weibull modulus are specified in DIN EN 843-5 and DIN 51 110-3.

If the probability distribution of the strength, X, is a Weibull distribution with its density given by


...
Wikipedia

...