*** Welcome to piglix ***

Water Cycle


The water cycle, also known as the hydrological cycle or the H2O cycle, describes the continuous movement of water on, above and below the surface of the Earth. The mass of water on Earth remains fairly constant over time but the partitioning of the water into the major reservoirs of ice, fresh water, saline water and atmospheric water is variable depending on a wide range of climatic variables. The water moves from one reservoir to another, such as from river to ocean, or from the ocean to the atmosphere, by the physical processes of evaporation, condensation, precipitation, infiltration, surface runoff, and subsurface flow. In doing so, the water goes through different phases: liquid, solid (ice) and vapor.

The water cycle involves the exchange of energy, which leads to temperature changes. For instance, when water evaporates, it takes up energy from its surroundings and cools the environment. When it condenses, it releases energy and warms the environment. These heat exchanges influence climate.

The evaporative phase of the cycle purifies water which then replenishes the land with freshwater. The flow of liquid water and ice transports minerals across the globe. It is also involved in reshaping the geological features of the Earth, through processes including erosion and sedimentation. The water cycle is also essential for the maintenance of most life and ecosystems on the planet.

The sun, which drives the water cycle, heats water in oceans and seas. Water evaporates as water vapor into the air. Ice and snow can sublimate directly into water vapour. Evapotranspiration is water transpired from plants and evaporated from the soil. The water vapour molecule H
2
O
has less density compared to the major components of the atmosphere, nitrogen and oxygen, N
2
andO
2
. Due to the significant difference in molecular mass, water vapor in gas form gains height in open air as a result of buoyancy. However, as altitude increases, air pressure decreases and the temperature drops (see Gas laws). The lowered temperature causes water vapour to condense into a tiny liquid water droplet which is heavier than the air, such that it falls unless supported by an updraft. A huge concentration of these droplets over a large space up in the atmosphere become visible as cloud. Fog is formed if the water vapour condenses near ground level, as a result of moist air and cool air collision or an abrupt reduction in air pressure. Air currents move water vapour around the globe, cloud particles collide, grow, and fall out of the upper atmospheric layers as precipitation. Some precipitation falls as snow or hail, sleet, and can accumulate as ice caps and glaciers, which can store frozen water for thousands of years. Most water falls back into the oceans or onto land as rain, where the water flows over the ground as surface runoff. A portion of runoff enters rivers in valleys in the landscape, with streamflow moving water towards the oceans. Runoff and water emerging from the ground (groundwater) may be stored as freshwater in lakes. Not all runoff flows into rivers, much of it soaks into the ground as infiltration. Some water infiltrates deep into the ground and replenishes aquifers, which can store freshwater for long periods of time. Some infiltration stays close to the land surface and can seep back into surface-water bodies (and the ocean) as groundwater discharge. Some groundwater finds openings in the land surface and comes out as freshwater springs. In river valleys and floodplains, there is often continuous water exchange between surface water and ground water in the hyporheic zone. Over time, the water returns to the ocean, to continue the water cycle.


...
Wikipedia

...