Probability density function
Plot of the centered Voigt profile for four cases. Each case has a full width at half-maximum of very nearly 3.6. The black and red profiles are the limiting cases of the Gaussian (γ =0) and the Lorentzian (σ =0) profiles respectively. |
|
Cumulative distribution function
|
|
Parameters | |
---|---|
Support | |
CDF | (complicated - see text) |
Mean | (not defined) |
Median | |
Mode | |
Variance | (not defined) |
Skewness | (not defined) |
Ex. kurtosis | (not defined) |
MGF | (not defined) |
CF |
In spectroscopy, the Voigt profile (named after Woldemar Voigt) is a line profile resulting from the convolution of two broadening mechanisms, one of which alone would produce a Gaussian profile (usually, as a result of the Doppler broadening), and the other would produce a Lorentzian profile. Voigt profiles are common in many branches of spectroscopy and diffraction. Due to the computational expense of the convolution operation, the Voigt profile is often approximated using a pseudo-Voigt profile.
All normalized line profiles can be considered to be probability distributions. The Gaussian profile has a Gaussian, or normal, distribution and a Lorentzian profile has a Lorentz, or Cauchy, distribution. Without loss of generality, we can consider only centered profiles, which peak at zero. The Voigt profile is then a convolution of a Lorentz profile and a Gaussian profile:
where x is the shift from the line center, is the centered Gaussian profile:
and is the centered Lorentzian profile: