*** Welcome to piglix ***

Powder diffraction


Powder diffraction is a scientific technique using X-ray, neutron, or electron diffraction on powder or microcrystalline samples for structural characterization of materials. An instrument dedicated to performing such powder measurements is called a powder diffractometer.

Powder diffraction stands in contrast to single crystal diffraction techniques, which work best with a single, well-ordered crystal.

A diffractometer produces waves at a known frequency, which is determined by their source. The source is often x-rays, because they are the only kind of light with the correct frequency for inter-atomic-scale diffraction. However, electrons and neutrons are also common sources, with their frequency determined by their de Broglie wavelength. When these waves reach the sample, the atoms of the sample act just like a diffraction grating, producing bright spots at particular angles. By measuring the angle where these bright spots occur, the spacing of the diffraction grating can be determined by Bragg's law. Because the sample itself is the diffraction grating, this spacing is the atomic spacing.

The distinction between powder and single crystal diffraction is the degree of texturing in the sample. Single crystals have maximal texturing, and are said to be anisotropic. In contrast, in powder diffraction, every possible crystalline orientation is represented equally in a powdered sample, the isotropic case. PXRD operates under the assumption that the sample is randomly arranged. Therefore, a statistically significant number of each plane of the crystal structure will be in the proper orientation to diffract the X-rays. Therefore, each plane will be represented in the signal. In practice, it is sometimes necessary to rotate the sample orientation to eliminate the effects of texturing and achieve true randomness.


...
Wikipedia

...