Cloud structure in Venus's atmosphere in 1979,
revealed by ultraviolet observations from Pioneer Venus Orbiter |
|
General information | |
---|---|
Height | 250 km (160 mi) |
Average surface pressure | 93 bar or 9.3 MPa |
Mass | 4.8 × 1020 kg |
Composition | |
Carbon dioxide | 96.5 % |
Nitrogen | 3.5 % |
Sulfur dioxide | 150 ppm |
Argon | 70 ppm |
Water vapour | 20 ppm |
Carbon monoxide | 17 ppm |
Helium | 12 ppm |
Neon | 7 ppm |
Hydrogen chloride | 0.1–0.6 ppm |
Hydrogen fluoride | 0.001–0.005 ppm |
The atmosphere of Venus is the layer of gases surrounding Venus. It is composed primarily of carbon dioxide and is much denser and hotter than that of Earth. The temperature at the surface is 740 K (467 °C, 872 °F), and the pressure is 93 bar (9.3 MPa), roughly the pressure found 900 m (3,000 ft) underwater on Earth. The Venusian atmosphere supports opaque clouds made of sulfuric acid, making optical Earth-based and orbital observation of the surface impossible. Information about the topography has been obtained exclusively by radar imaging. Aside from carbon dioxide, the other main component is nitrogen. Other chemical compounds are present only in trace amounts.
Mikhail Lomonosov was the first person to hypothesize the existence of an atmosphere on Venus based on his observation of the transit of Venus of 1761 in a small observatory near his house in Saint Petersburg, Russia.
Aside from the very surface layers, the atmosphere is in a state of vigorous circulation. The upper layer of troposphere exhibits a phenomenon of super-rotation, in which the atmosphere circles the planet in just four Earth days, much faster than the planet's sidereal day of 243 days. The winds supporting super-rotation blow at a speed of 100 m/s (~360 km/h or 220 mph) or more. Winds move at up to 60 times the speed of the planet's rotation, while Earth's fastest winds are only 10% to 20% rotation speed. On the other hand, the wind speed becomes increasingly slower as the elevation from the surface decreases, with the breeze barely reaching the speed of 10 km/h (2.8 m/s) on the surface. Near the poles are anticyclonic structures called polar vortices. Each vortex is double-eyed and shows a characteristic S-shaped pattern of clouds. Above there is an intermediate layer of mesosphere which separates the troposphere from the thermosphere. The thermosphere is also characterized by strong circulation, but very different in its nature - the gases heated and partially ionized by sunlight in the sunlit hemisphere migrate to the dark hemisphere where they recombine and downwell.