*** Welcome to piglix ***

Tyrosine phosphatase

Protein-tyrosine-phosphatase
1xm2.jpg
Protein tyrosine phosphatase 1, trimer, Human
Identifiers
EC number 3.1.3.48
CAS number 79747-53-8
Databases
IntEnz IntEnz view
BRENDA BRENDA entry
ExPASy NiceZyme view
KEGG KEGG entry
MetaCyc metabolic pathway
PRIAM profile
PDB structures RCSB PDB PDBe PDBsum
Low-molecular-weight phosphotyrosine protein phosphatase
PDB 1phr EBI.jpg
Structure of a low-molecular-weight phosphotyrosine protein phosphatase.
Identifiers
Symbol LMWPc
Pfam PF01451
InterPro IPR017867
SMART SM00226
SCOP 1phr
SUPERFAMILY 1phr
Protein-tyrosine phosphatase
PDB 1ypt EBI.jpg
Structure of Yersinia protein tyrosine phosphatase.
Identifiers
Symbol Y_phosphatase
Pfam PF00102
Pfam clan CL0031
InterPro IPR000242
SMART SM00194
PROSITE PS50055
SCOP 1ypt
SUPERFAMILY 1ypt
Dual-specificity phosphatase, catalytic domain
PDB 1vhr EBI.jpg
Structure of the dual-specificity protein phosphatase VHR.
Identifiers
Symbol DSPc
Pfam PF00782
Pfam clan CL0031
InterPro IPR000340
PROSITE PDOC00323
SCOP 1vhr
SUPERFAMILY 1vhr
Protein-tyrosine phosphatase, SIW14-like
PDB 1xri EBI.jpg
Structure of a putative phosphoprotein phosphatase from Arabidopsis thaliana.
Identifiers
Symbol Y_phosphatase2
Pfam PF03162
Pfam clan CL0031
InterPro IPR004861

Protein tyrosine phosphatases are a group of enzymes that remove phosphate groups from phosphorylated tyrosine residues on proteins. Protein tyrosine (pTyr) phosphorylation is a common post-translational modification that can create novel recognition motifs for protein interactions and cellular localization, affect protein stability, and regulate enzyme activity. As a consequence, maintaining an appropriate level of protein tyrosine phosphorylation is essential for many cellular functions. Tyrosine-specific protein phosphatases (PTPase; EC 3.1.3.48) catalyse the removal of a phosphate group attached to a tyrosine residue, using a cysteinyl-phosphate enzyme intermediate. These enzymes are key regulatory components in signal transduction pathways (such as the MAP kinase pathway) and cell cycle control, and are important in the control of cell growth, proliferation, differentiation, transformation, and synaptic plasticity.

Together with tyrosine kinases, PTPs regulate the phosphorylation state of many important signalling molecules, such as the MAP kinase family. PTPs are increasingly viewed as integral components of signal transduction cascades, despite less study and understanding compared to tyrosine kinases.


...
Wikipedia

...