The toroidal ring model, known originally as the Parson magneton or magnetic electron, is also known as the plasmoid ring, vortex ring, or helicon ring. This physical model treated electrons and protons as elementary particles, and was first proposed by Alfred Lauck Parson in 1915.
Instead of a single orbiting charge, the toroidal ring was conceived as a collection of infinitesimal charge elements, which orbited or circulated along a common continuous path or "loop". In general, this path of charge could assume any shape, but tended toward a circular form due to internal repulsive electromagnetic forces. In this configuration the charge elements circulated, but the ring as a whole did not radiate due to changes in electric or magnetic fields since it remained . The ring produced an overall magnetic field ("spin") due to the current of the moving charge elements. These elements circulated around the ring at the speed of light c, but at frequency ν = c/2πR, which depended inversely on the radius R. The ring's inertial energy increased when compressed, like a spring, and was also inversely proportional to its radius, and therefore proportional to its frequency ν. The theory claimed that the proportionality constant was Planck's constant h, the conserved angular momentum of the ring.