Names | |
---|---|
Preferred IUPAC name
Tetrahedrane
|
|
Systematic IUPAC name
Tricyclo[1.1.0.02,4]butane
|
|
Identifiers | |
3D model (JSmol)
|
|
2035811 | |
ChEBI | |
ChemSpider | |
PubChem CID
|
|
|
|
|
|
Properties | |
C4H4 | |
Molar mass | 52.08 g·mol−1 |
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
|
|
what is ?) | (|
Infobox references | |
Tetrahedrane is a platonic hydrocarbon with chemical formula C4H4 and a tetrahedral structure. Extreme angle strain (carbon bond angles deviate considerably from the tetrahedral bond angle of 109.5°) prevents this molecule from forming naturally.
In 1978, Günther Maier prepared a stable tetrahedrane derivative with four tert-butyl substituents. These substituents are very bulky, and completely envelop the tetrahedrane core. Maier suggested that bonds in the core are prevented from breaking because this would force the substituents closer together (corset effect) resulting in Van der Waals strain. Tetrahedrane is one of the possible platonic hydrocarbons and has the IUPAC name tricyclo[1.1.0.02,4]butane.
Unsubstituted tetrahedrane (C4H4) remains elusive, although it is predicted to be kinetically stable. One strategy that has been explored (but thus far failed) is reaction of propene with atomic carbon. Locking away a tetrahedrane molecule inside a fullerene has only been attempted in silico.
The tert-butyl derivative was first synthesised starting from a cycloaddition of an alkyne with t-Bu substituted maleic anhydride, followed by rearrangement with carbon dioxide expulsion to a cyclopentadienone and its bromination, followed by addition of the fourth t-Bu group and a photochemical rearrangement with expulsion of carbon monoxide.