Names | |
---|---|
Preferred IUPAC name
Atomic carbon
|
|
Systematic IUPAC name
Methanediylidene (substitutive)
Carbon (additive) |
|
Identifiers | |
3D model (Jmol)
|
|
ChEBI | |
ChemSpider | |
PubChem CID
|
|
|
|
|
|
Properties | |
C | |
Molar mass | 12.01 g·mol−1 |
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
|
|
what is ?) | (|
Infobox references | |
Atomic carbon (systematically named methanediylidene and carbon), also called monocarbon, is an inorganic chemical with the chemical formula C (also written [C]). It is a gas that only exists above 3,642 °C (6,588 °F), below which it aggregates into graphite or other fullerenes.
The trivial name monocarbon is the preferred IUPAC name. The systematic names, methanediylidene and carbon, valid IUPAC names, are constructed according to the substitutive and additive nomenclatures, respectively.
Methanediylidene is viewed as methane with all four hydrogen atoms removed. By default, this name pays no regard to the radicality of the atomic carbon. Although, in even more specific context, it can also name the non-radical excited states, whereas the radical ground state with two unpaired electrons is named methanediylylidene.
Many of atomic carbon's electronic states lie relatively close to each other, giving rise to varying degrees of radical chemistry. The ground state is a triplet radical with two unpaired electrons (X3P0), and the first two excited states are a singlet non-radical (a1D2) and a singlet radical with two unpaired electrons (b1S0). A sample of atomic carbon exists as a mixture of electronic states even at room temperature, giving rise to complex reactions. For example, reactions of the triplet radical with non-radical species generally involves abstraction, whereas reactions of the singlet non-radical involves not only abstraction, but also insertion or addition.
Atomic carbon accept an electron-pair donating ligand into the molecule by adduction:
Because of this acceptance of the electron-pair donating ligand, atomic carbon has Lewis-acidic character. Atomic carbon can accept two such ligands. An example is C(CO)
2.