*** Welcome to piglix ***

Surface chemistry of paper


The surface chemistry of paper is responsible for many important paper properties, such as gloss, waterproofing, and printability. Many components are used in the paper-making process that affect the surface.

Coating components are subject to particle-particle, particle-solvent, and particle-polymer interactions.Van der Waals forces, electrostatic repulsions, and steric stabilization are the reasons for these interactions. Importantly, the characteristics of adhesion and cohesion between the components form the base coating structure. Calcium carbonate and kaolin are commonly used pigments. Pigments support a structure of fine porosity and form a light scattering surface. The surface charge of the pigment plays an important role in dispersion consistency. The surface charge of calcium carbonate is negative and not dependent on pH, however it can decompose under acidic conditions. Kaolin has negatively charged faces while the charge of its laterals depend on pH, being positive in acidic conditions and negative in basic conditions with an isoelectric point at 7.5. The equation for determining the isoelectric point is as follows:

In the papermaking process, the pigment dispersions are generally kept at a pH above 8.0.

Binders promote the binding of pigment particles between themselves and the coating layer of the paper. Binders are spherical particles less than 1 µm in diameterr. Common binders are styrene maleic anhydride copolymer or styrene-acrylate copolymer. The surface chemical composition is differentiated by the adsorption of acrylic acid or an anionic surfactant, both of which are used for stabilization of the dispersion in water.Co-binders, or thickeners, are generally water-soluble polymers that influence the paper's color viscosity, water retention, sizing, and gloss. Some common examples are carboxymethyl cellulose (CMC), cationic and anionic hydroxyethyl cellulose (EHEC), modified starch, and dextrin.


...
Wikipedia

...