Intersecting Storage Rings | CERN, 1971–1984 |
---|---|
Super Proton Synchrotron | CERN, 1981–1984 |
ISABELLE | BNL, cancelled in 1983 |
Tevatron | Fermilab, 1987–2011 |
Relativistic Heavy Ion Collider | BNL, 2000–present |
Superconducting Super Collider | Cancelled in 1993 |
Large Hadron Collider | CERN, 2009–present |
Future Circular Collider | Proposed |
The Super Proton Synchrotron (SPS) is a particle accelerator of the synchrotron type at CERN. It is housed in a circular tunnel, 6.9 kilometres (4.3 mi) in circumference, straddling the border of France and Switzerland near Geneva, Switzerland.
The SPS was designed by a team led by John Adams, director-general of what was then known as Laboratory II. Originally specified as a 300 GeV accelerator, the SPS was actually built to be capable of 400 GeV, an operating energy it achieved on the official commissioning date of 17 June 1976. However, by that time, this energy had been exceeded by Fermilab, which reached an energy of 500 GeV on 14 May of that year.
The SPS has been used to accelerate protons and antiprotons, electrons and positrons (for use as the injector for the Large Electron–Positron Collider (LEP)), and heavy ions.
From 1981 to 1984, the SPS operated as a hadron (more precisely, proton–antiproton) collider (as such it was called SppS), when its beams provided the data for the UA1 and UA2 experiments, which resulted in the discovery of the W and Z bosons. These discoveries and a new technique for particles led to a Nobel Prize for Carlo Rubbia and Simon van der Meer in 1984.
The SPS is now used as the final injector for high-intensity proton beams for the Large Hadron Collider (LHC), which began preliminary operation on 10 September 2008, for which it accelerates protons from 26 GeV to 450 GeV. The LHC itself then accelerates them to several teraelectronvolts (TeV).