A solvated electron is a free electron in (solvated in) a solution, and is the smallest possible anion. Solvated electrons occur widely, although it is difficult to observe them directly since their lifetimes are so short.The deep color of solutions of alkali metals in ammonia arises from the presence of solvated electrons: blue when dilute and copper-colored when more concentrated (> 3 molar). Classically, discussions of solvated electrons focus on their solutions in ammonia, which are stable for days, but solvated electrons occur in water and other solvents; in fact, any solvent that mediates outer-sphere electron transfer. The solvated electron is responsible for a great deal of radiation chemistry.
Alkali metals dissolve in liquid ammonia giving deep blue solutions which are conducting in nature. The blue colour of the solution is due to ammoniated electrons which absorb energy in the visible region of light.
Focusing on ammonia solutions, all of the alkali metals, as well as Ca, Sr, Ba, Eu, and Yb (also Mg using an electrolytic process), dissolve to give the characteristic blue solutions. Other amines, such as methylamine and ethylamine, are also suitable solvents.
A lithium ammonia solution at −60 °C is saturated at about 16 mol% metal (MPM). When the concentration is increased in this range electrical conductivity increases from 10−2 to 104 ohm−1cm−1 (larger than liquid mercury). At around 8 MPM, a "transition to the metallic state" (TMS) takes place (also called a "metal to nonmetal transition" (MNMT)). At 4 MPM a liquid-liquid phase separation takes place: the less dense gold-color phase becomes immiscible from a more dense blue phase. Above 8 MPM the solution is bronze/gold-colored. In the same concentration range the overall density decreases by 30%.