*** Welcome to piglix ***

Radiation chemistry


Radiation chemistry is a subdivision of nuclear chemistry which is the study of the chemical effects of radiation on matter; this is very different from radiochemistry as no radioactivity needs to be present in the material which is being chemically changed by the radiation. An example is the conversion of water into hydrogen gas and hydrogen peroxide.

As ionizing radiation moves through matter its energy is deposited through interactions with the electrons of the absorber. The result of an interaction between the radiation and the absorbing species is removal of an electron from an atom or molecular bond to form radicals and excited species. The radical species then proceed to react with each other or with other molecules in their vicinity. It is the reactions of the radical species that are responsible for the changes observed following irradiation of a chemical system.

Charged radiation species (α and β particles) interact through Coulombic forces between the charges of the electrons in the absorbing medium and the charged radiation particle. These interactions occur continuously along the path of the incident particle until the kinetic energy of the particle is sufficiently depleted. Uncharged species (γ photons, x-rays) undergo a single event per photon, totally consuming the energy of the photon and leading to the ejection of an electron from a single atom. Electrons with sufficient energy proceed to interact with the absorbing medium identically to β radiation.

An important factor that distinguishes different radiation types from one another is the linear energy transfer (LET), which is the rate at which the radiation loses energy with distance traveled through the absorber. Low LET species are usually low mass, either photons or electron mass species (β particles, positrons) and interact sparsely along their path through the absorber, leading to isolated regions of reactive radical species. High LET species are usually greater in mass than one electron, for example α particles, and lose energy rapidly resulting in a cluster of ionisation events in close proximity to one another. Consequently, the heavy particle travels a relatively short distance from its origin.


...
Wikipedia

...