*** Welcome to piglix ***

Silver(I) fluoride

Silver(I) fluoride
Silver(I)-fluoride-3D-ionic.png
Silver(I) fluoride.jpg
Names
IUPAC name
Silver(I) fluoride
Identifiers
7775-41-9 YesY
3D model (Jmol) Interactive image
ECHA InfoCard 100.028.996
PubChem 62656
RTECS number VW4250000
Properties
AgF
Molar mass 126.87 g·mol−1
Appearance yellow-brown solid
Density 5.852 g/cm3 (15 °C)
Melting point 435 °C (815 °F; 708 K)
Boiling point 1,159 °C (2,118 °F; 1,432 K)
85.78 g/100 mL (0 °C)
119.8 g/100 mL (10 °C)
179.1 g/100 mL (25 °C)
213.4 g/100 mL (50 °C)
Solubility 83g/100 g (11.9 °C) in hydrogen fluoride
1.5g/100 mL in methanol(25 °C)
−36.5·10−6 cm3/mol
Structure
cubic
Thermochemistry
48.1 J/mol·K
83.7 J/mol·K
-206 kJ/mol
-187.9 kJ/mol
Hazards
Main hazards Corrosive
GHS pictograms The corrosion pictogram in the Globally Harmonized System of Classification and Labelling of Chemicals (GHS)
GHS signal word Danger
H314
P280, P305+351+338, P310
Corrosive C
R-phrases R23/24/25, R34
S-phrases S13, S22, S24/25, S26, S36/37/39, S45
NFPA 704
Flammability code 0: Will not burn. E.g., water Health code 2: Intense or continued but not chronic exposure could cause temporary incapacitation or possible residual injury. E.g., chloroform Reactivity code 1: Normally stable, but can become unstable at elevated temperatures and pressures. E.g., calcium Special hazard OX: Oxidizer. E.g., potassium perchlorateNFPA 704 four-colored diamond
Related compounds
Other anions
Silver(I) oxide
Silver(I) chloride
Other cations
Copper(I) fluoride
Gold(I) fluoride
Related compounds
Silver subfluoride
Silver(II) fluoride
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
N  (what is YesYN ?)
Infobox references

Silver(I) fluoride is the inorganic compound with the formula AgF. It is one of the three main fluorides of silver, the others being silver subfluoride and silver(II) fluoride. AgF has relatively few niche applications; it has been employed as a fluorination and desilylation reagent in organic synthesis and in aqueous solution as a topical caries treatment in dentistry.

The hydrates of AgF present as colourless, while pure anhydrous samples are yellow.

High-purity silver(I) fluoride can be produced by the heating of silver carbonate to 310 °C under a hydrogen fluoride environment, in a platinum tube:

Laboratory routes to the compound typically avoid the use of gaseous hydrogen fluoride. One method is the thermal decomposition of silver tetrafluoroborate:

In an alternative route, silver(I) oxide is dissolved in concentrated aqueous hydrofluoric acid, and the silver fluoride is precipitated out of the resulting solution by acetone.

The structure of AgF has been determined by X-ray diffraction. At ambient temperature and pressure, silver(I) fluoride exists as the polymorph AgF-I, which adopts a cubic crystal system with space group Fm3m in the Hermann–Mauguin notation. The rock salt structure adopted by the other silver monohalides. The lattice parameter is 4.936(1) Å, significantly lower than those of AgCl and AgBr.Neutron and X-ray diffraction studies have further shown that at 2.70(2) GPa, a structural transition occurs to a second polymorph (AgF-II) with the caesium chloride structure, and lattice parameter 2.945 Å. The associated decrease in volume is approximately ten percent. A third polymorph, AgF-III, forms on reducing the pressure to 2.59(2) GPa, and has an inverse nickel arsenide structure. The lattice parameters are a = 3.244(2) Å and c = 6.24(1) Å; the rock salt structure is regained only on reduction of the pressure to 0.9(1) GPa. Non-stochiometric behaviour is exhibited by all three polymorphs under extreme pressures.


...
Wikipedia

...