The Sevier orogeny was a mountain-building event that affected western North America from Canada to the north to Mexico to the south.
The Sevier orogeny was the result of convergent boundary tectonic activity between approximately 140 million years (Ma) ago and 50 Ma. The Sevier River area of central Utah is the namesake of this event. This orogeny was produced by the subduction of the oceanic Farallon Plate underneath the continental North American Plate. Crustal thickening that led to mountain building was caused by a combination of compressive forces and conductive heating initiated by subduction in the Sevier region which caused folding and thrusting.
The mountains that were formed as a result were located in western Utah and eastern Nevada. The size, shape, and depth of the thrust faults created in the Sevier event are determined by seismic studies and deep well data because they are mostly still buried by overlying rock and sediment.
The Sevier and Laramide orogenies ended when subduction along the western edge of North America was overcome by western extension of the North American Plate to start the Basin and Range Orogeny. The well known and familiar Basin and Range faults cut the older Sevier thrust faults. The Sevier orogeny was preceded by several other mountain-building events including the Nevadan orogeny, the Sonoman orogeny, and the Antler orogeny, and partially overlapped in time and space with the Laramide orogeny.
Since the Sevier and Laramide orogenies occurred at similar times and places, they are sometimes confused. In general the Sevier orogeny defines a more western compressional event that took advantage of weak bedding planes in overlying Paleozoic and Mesozoic sedimentary rock. As the crust was shortened, pressure was transferred eastward along the weak sedimentary layers, producing “thin-skinned” thrust faults that generally get younger to the east. In contrast, the Laramide orogeny produced “basement-cored” uplifts that often took advantage of pre-existing faults that formed during rifting in the Late Precambrian during the breakup of the supercontinent Rodinia or during the Ancestral Rocky Mountains orogeny.