*** Welcome to piglix ***

Semi-empirical mass formula


In nuclear physics, the semi-empirical mass formula (SEMF) (sometimes also called Weizsäcker's formula, or the Bethe–Weizsäcker formula, or the Bethe–Weizsäcker mass formula to distinguish it from the Bethe–Weizsäcker process) is used to approximate the mass and various other properties of an atomic nucleus from its number of protons and neutrons. As the name suggests, it is based partly on theory and partly on empirical measurements. The theory is based on the liquid drop model proposed by George Gamow, which can account for most of the terms in the formula and gives rough estimates for the values of the coefficients. It was first formulated in 1935 by German physicist Carl Friedrich von Weizsäcker, and although refinements have been made to the coefficients over the years, the structure of the formula remains the same today.

The SEMF gives a good approximation for atomic masses and several other effects, but does not explain the appearance of magic numbers of protons and neutrons, and the extra binding-energy and measure of stability that are associated with these numbers of nucleons.

The liquid drop model in nuclear physics treats the nucleus as a drop of incompressible nuclear fluid of very high density. It was first proposed by George Gamow and then developed by Niels Bohr and John Archibald Wheeler. The nucleus is made of nucleons (protons and neutrons), which are held together by the nuclear force (a residual effect of the strong force). This is very similar to the structure of a spherical liquid drop made of microscopic molecules. This is a crude model that does not explain all the properties of the nucleus, but does explain the spherical shape of most nuclei. It also helps to predict the nuclear binding energy and to assess how much is available for consumption.


...
Wikipedia

...