A Schiff base (named after Hugo Schiff) is a compound with the general structure R2C=NR' (R' ≠ H). They can be considered a sub-class of imines, being either secondary ketimines or secondary aldimines depending on their structure. The term is often synonymous with azomethine which refers specifically to secondary aldimines (i.e. R-CH=NR' where R' ≠ H).
A number of special naming systems exist for these compounds. For instance a Schiff base derived from an aniline, where R3 is a phenyl or a substituted phenyl, can be called an anil, while bis-compounds are often referred to as salen-type compounds.
The term Schiff base is normally applied to these compounds when they are being used as ligands to form coordination complexes with metal ions. Such complexes do occur naturally, for instance in Corrin, but the majority of Schiff bases are artificial and are used to form many important catalysts, such as Jacobsen's catalyst.
Schiff bases can be synthesized from an aliphatic or aromatic amine and a carbonyl compound by nucleophilic addition forming a hemiaminal, followed by a dehydration to generate an imine. In a typical reaction, 4,4'-diaminodiphenyl ether reacts with o-vanillin:
Schiff bases are common enzymatic intermediates where an amine, such as the terminal group of a lysine residue reversibly reacts with an aldehyde or ketone of a cofactor or substrate. The common enzyme cofactor PLP forms a Schiff base with a lysine residue and is transaldiminated to the substrate(s). Similarly, the cofactor retinal forms a Schiff base in rhodopsins, including human rhodopsin (via Lysine 296), which is key in the photoreception mechanism.