In mathematics, the Sato–Tate conjecture is a statistical statement about the family of elliptic curves Ep over the finite field with p elements, with p a prime number, obtained from an elliptic curve E over the rational number field, by the process of reduction modulo a prime for almost all p. If Np denotes the number of points on Ep and defined over the field with p elements, the conjecture gives an answer to the distribution of the second-order term for Np. That is, by Hasse's theorem on elliptic curves we have
as p → ∞, and the point of the conjecture is to predict how the O-term varies.
Let E be an elliptic curve defined over the rationals numbers without complex multiplication. Define θp as the solution to the equation
Then, for every two real numbers and for which ,