*** Welcome to piglix ***

Hasse's theorem on elliptic curves


Hasse's theorem on elliptic curves, also referred to as the Hasse bound, provides an estimate of the number of points on an elliptic curve over a finite field, bounding the value both above and below.

If N is the number of points on the elliptic curve E over a finite field with q elements, then Helmut Hasse's result states that

That is, the interpretation is that N differs from q + 1, the number of points of the projective line over the same field, by an 'error term' that is the sum of two complex numbers, each of absolute value √q.

This result had originally been conjectured by Emil Artin in his thesis. It was proven by Hasse in 1933, with the proof published in a series of papers in 1936.

Hasse's theorem is equivalent to the determination of the absolute value of the roots of the local zeta-function of E. In this form it can be seen to be the analogue of the Riemann hypothesis for the function field associated with the elliptic curve.

A generalization of the Hasse bound to higher genus algebraic curves is the Hasse–Weil bound. This provides a bound on the number of points on a curve over a finite field. If the number of points on the curve C of genus g over the finite field of order q is , then


...
Wikipedia

...