In mathematics, an elliptic curve is a plane algebraic curve defined by an equation of the form
that is non-singular; that is, its graph has no cusps or self-intersections. (When the characteristic of the coefficient field is equal to 2 or 3, the above equation is not quite general enough to comprise all non-singular cubic curves; see below for a more precise definition.)
Formally, an elliptic curve is a smooth, projective, algebraic curve of genus one, on which there is a specified point O. An elliptic curve is in fact an abelian variety – that is, it has a multiplication defined algebraically, with respect to which it is an abelian group – and O serves as the identity element. Often the curve itself, without O specified, is called an elliptic curve. The point O is actually the "point at infinity" in the projective plane.
If y2 = P(x), where P is any polynomial of degree three in x with no repeated roots, then we obtain a nonsingular plane curve of genus one, which is thus an elliptic curve. If P has degree four and is square-free this equation again describes a plane curve of genus one; however, it has no natural choice of identity element. More generally, any algebraic curve of genus one, for example from the intersection of two quadric surfaces embedded in three-dimensional projective space, is called an elliptic curve, provided that it has at least one rational point to act as the identity.