Names | |
---|---|
IUPAC name
2-(Methylamino)acetic acid
|
|
Identifiers | |
107-97-1 | |
3D model (Jmol) |
Interactive image Interactive image |
3DMet | B01190 |
1699442 | |
ChEBI | CHEBI:15611 |
ChEMBL | ChEMBL304383 |
ChemSpider | 1057 |
ECHA InfoCard | 100.003.217 |
EC Number | 203-538-6 |
2018 | |
KEGG | C00213 |
MeSH | Sarcosine |
PubChem | 1088 |
UNII | Z711V88R5F |
|
|
|
|
Properties | |
C3H7NO2 | |
Molar mass | 89.09 g·mol−1 |
Appearance | White crystalline powder |
Odor | Odourless |
Density | 1.093 g/mL |
Melting point | 208 to 212 °C (406 to 414 °F; 481 to 485 K) |
Boiling point | 195.1 °C (383.2 °F; 468.2 K) |
89.09 g L−1 (at 20 °C) | |
log P | 0.599 |
Acidity (pKa) | 2.36 |
Basicity (pKb) | 11.64 |
UV-vis (λmax) | 260 nm |
Absorbance | 0.05 |
Thermochemistry | |
128.9 J K−1 mol−1 | |
Std enthalpy of
formation (ΔfH |
−513.50–−512.98 kJ mol−1 |
Std enthalpy of
combustion (ΔcH |
−1667.84–−1667.54 kJ mol−1 |
Related compounds | |
Related alkanoic acids
|
|
Related compounds
|
Dimethylacetamide |
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
|
|
what is ?) | (|
Infobox references | |
Sarcosine, also known as N-methylglycine, is an intermediate and byproduct in glycine synthesis and degradation. Sarcosine is metabolized to glycine by the enzyme sarcosine dehydrogenase, while glycine-N-methyl transferase generates sarcosine from glycine. Sarcosine is an amino acid derivative that is naturally found in muscles and other body tissues. In the laboratory, it may be synthesized from chloroacetic acid and methylamine. Sarcosine is found naturally as an intermediate in the metabolism of choline to glycine. Sarcosine is sweet to the taste and dissolves in water. It is used in manufacturing biodegradable surfactants and toothpastes as well as in other applications.
Sarcosine is ubiquitous in biological materials and is present in such foods as egg yolks, turkey, ham, vegetables, legumes, etc.
Sarcosine is formed from dietary intake of choline and from the metabolism of methionine, and is rapidly degraded to glycine, which, in addition to its importance as a constituent of protein, plays a significant role in various physiological processes as a prime metabolic source of components of living cells such as glutathione, creatine, purines and serine. The concentration of sarcosine in blood serum of normal human subjects is 1.4 ± 0.6 micromolar.
Sarcosine has no known toxicity, as evidenced by the lack of phenotypic manifestations of sarcosinemia, an inborn error of sarcosine metabolism. Sarcosinemia can result from severe folate deficiency because of the folate requirement for the conversion of sarcosine to glycine.
Recently, sarcosine has been investigated in relation to the mental illness schizophrenia. Early evidence suggests that intake of 2 g/day sarcosine as add-on therapy to certain antipsychotics (not clozapine) in schizophrenia gives significant additional reductions in both positive and negative symptomatology as well as the neurocognitive and general psychopathological symptoms that are common to the illness. Sarcosine had been tolerated well. It is also under investigation for the possible prevention of schizophrenic illness during the prodromal stage of the disease. It acts as a type 1 glycine transporter inhibitor and a glycine agonist. It increases glycine concentrations in the brain thus causing increased NMDA receptor activation and a reduction in symptoms. As such, it might be an interesting treatment option and a possible new direction in the treatment of the mental illness in the future. A 2011 meta-analysis found adjunctive sarcosine to have a medium effect size for negative and total symptoms.