*** Welcome to piglix ***

Salt dome


A salt dome is a type of structural dome formed when a thick bed of evaporite minerals (mainly salt, or halite) found at depth intrudes vertically into surrounding rock strata, forming a diapir. It is important in petroleum geology because salt structures are impermeable and can lead to the formation of a stratigraphic trap.

The formation of a salt dome begins with the deposition of salt in a restricted marine basin. Because the flow of salt-rich seawater into the basin is not balanced by outflow, much to all water lost from the basin is via evaporation, resulting in the precipitation and deposition of salt evaporites. The rate of sedimentation of salt is significantly larger than the rate of sedimentation of clastics, but it is recognized that a single evaporation event is rarely enough to produce the vast quantities of salt needed to form a layer thick enough for salt diapirs to be formed. This indicates that a sustained period of episodic flooding and evaporation of the basin must occur, as can be seen from the example of the Mediterranean Messinian salinity crisis. At the present day, evaporite deposits can be seen accumulating in basins that merely have restricted access but do not completely dry out; they provide an analogue to some deposits recognized in the geologic record, such as the Garabogazköl basin in Turkmenistan.

Over time, the layer of salt is covered with deposited sediment, becoming buried under an increasingly large overburden. The overlying sediment will undergo compaction, causing an increase in density and therefore a decrease in buoyancy. Unlike clastics, pressure has a significantly smaller effect on the density of salt due to its crystal structure and this eventually leads to it becoming more buoyant than the sediment above it. The ductility of salt initially allows it to plastically deform and flow laterally, decoupling the overlying sediment from the underlying sediment. Since the salt has a larger buoyancy than the sediment above - and if a significant faulting event affects the lower surface of the salt - the salt can begin to flow vertically, forming a salt pillow. The vertical growth of these salt pillows creates pressure on the upward surface, causing extension and faulting (see salt tectonics).


...
Wikipedia

...