Permeability in fluid mechanics and the earth sciences (commonly symbolized as κ, or k) is a measure of the ability of a porous material (often, a rock or an unconsolidated material) to allow fluids to pass through it.
The permeability of a medium is related to the porosity, but also to the shapes of the pores in the medium and their level of connectedness.
Permeability is the property of rocks that is an indication of the ability for fluids (gas or liquid) to flow through rocks. High permeability will allow fluids to move rapidly through rocks. Permeability is affected by the pressure in a rock. The unit of measure is called the darcy, named after Henry Darcy (1803-1858). Sandstones may vary in permeability from less than one to over 50,000 millidarcys (md). Permeabilities are more commonly in the range of tens to hundreds of millidarcies. A rock with 25% porosity and a permeability of 1 md will not yield a significant flow of water. Such “tight” rocks are usually artificially stimulated (fractured or acidized) to create permeability and yield a flow.
The SI unit for permeability is m2. A practical unit for permeability is the darcy (d), or more commonly the millidarcy (md) (1 darcy 10−12m2). The name honors the French Engineer Henry Darcy who first described the flow of water through sand filters for potable water supply. Permeability values for sandstones range typically from a fraction of a darcy to several darcys. The unit of cm2 is also sometimes used (1 cm2 = 10−4 m2 108 d).