*** Welcome to piglix ***

Roulette (curve)


In the differential geometry of curves, a roulette is a kind of curve, generalizing cycloids, epicycloids, hypocycloids, trochoids, and involutes.

Roughly speaking, a roulette is the curve described by a point (called the generator or pole) attached to a given curve as that curve rolls without slipping, along a second given curve that is fixed. More precisely, given a curve attached to a plane which is moving so that the curve rolls, without slipping, along a given curve attached to a fixed plane occupying the same space, then a point attached to the moving plane describes a curve, in the fixed plane called a roulette.

In the illustration, the fixed curve (blue) is a parabola, the rolling curve (green) is an equal parabola, and the generator is the vertex of the rolling parabola which describes the roulette (red). In this case the roulette is the cissoid of Diocles.

In the case where the rolling curve is a line and the generator is a point on the line, the roulette is called an involute of the fixed curve. If the rolling curve is a circle and the fixed curve is a line then the roulette is a trochoid. If, in this case, the point lies on the circle then the roulette is a cycloid.

A related concept is a glissette, the curve described by a point attached to a given curve as it slides along two (or more) given curves.

Formally speaking, the curves must be differentiable curves in the Euclidean plane. The fixed curve is kept invariant; the rolling curve is subjected to a continuous congruence transformation such that at all times the curves are tangent at a point of contact that moves with the same speed when taken along either curve (another way to express this constraint is that the point of contact of the two curves is the instant centre of rotation of the congruence transformation). The resulting roulette is formed by the locus of the generator subjected to the same set of congruence transformations.


...
Wikipedia

...