In geometry, a locus (plural: loci) (Latin word for "place", "location") is a set of points (commonly, a line, a line segment, a curve or a surface), whose location satisfies or is determined by one or more specified conditions.
Until the beginning of 20th century, a geometrical shape (for example a curve) was not considered as an infinite set of points; rather, it was considered as an entity on which a point may be located or on which it moves. Thus a circle in the Euclidean plane was defined as the locus of a point that is at a given distance of a fixed point, the center of the circle. In modern mathematics, similar concepts are more frequently reformulated by describing shapes as sets; for instance, one says that the circle is the set of points that are at a given distance of the center.
In contrast to the set-theoretic view, the old formulation avoids considering infinite collections, as avoiding the actual infinite was an important philosophical position of earlier mathematicians.
Once set theory became the universal basis over which the whole mathematics is built, the term of locus became rather old fashioned. Nevertheless, the word is still widely used, mainly for a concise formulation, for example:
More recently, techniques such as the theory of schemes, and the use of category theory instead of set theory to give a foundation to mathematics, have returned to notions more like the original definition of a locus as an object in itself rather than as a set of points.
Examples from plane geometry include:
Other examples of loci appear in various areas of mathematics. For example, in complex dynamics, the Mandelbrot set is a subset of the complex plane that may be characterized as the connectedness locus of a family of polynomial maps.