In geometry, a hypocycloid is a special plane curve generated by the trace of a fixed point on a small circle that rolls within a larger circle. It is comparable to the cycloid but instead of the circle rolling along a line, it rolls within a circle.
If the smaller circle has radius r, and the larger circle has radius R = kr, then the parametric equations for the curve can be given by either:
or:
If k is an integer, then the curve is closed, and has k cusps (i.e., sharp corners, where the curve is not differentiable). Specially for k=2 the curve is a straight line and the circles are called Cardano circles. Girolamo Cardano was the first to describe these hypocycloids and their applications to high-speed printing.
If k is a rational number, say k = p/q expressed in simplest terms, then the curve has p cusps.
If k is an irrational number, then the curve never closes, and fills the space between the larger circle and a circle of radius R − 2r.
Each hypocycloid (for any value of r) is a for the gravitational potential inside a homogeneous sphere of radius R.
k=3 — a deltoid
k=4 — an astroid
k=5
k=6
k=2.1 = 21/10
k=3.8 = 19/5
k=5.5 = 11/2
k=7.2 = 36/5
The hypocycloid is a special kind of hypotrochoid, which are a particular kind of roulette.
A hypocycloid with three cusps is known as a deltoid.
A hypocycloid curve with four cusps is known as an astroid.
The hypocycloid with two cusps is a degenerate but still very interesting case, known as the Tusi couple.