Richard T. Whitcomb | |
---|---|
Whitcomb in front of the area-ruled Convair F-106 used by NASA for flight research, on its retirement in 1991
|
|
Born |
Evanston, Illinois |
February 21, 1921
Died | October 13, 2009 Newport News, Virginia |
(aged 88)
Richard Travis Whitcomb (February 21, 1921 – October 13, 2009) was an American aeronautical engineer who was noted for his contributions to the science of aerodynamics.
Whitcomb was born in Evanston, Illinois. His father, who had been a balloon pilot in World War I, was a mechanical engineer who specialized in rotational dynamics. In 1932 the family moved to Worcester, Massachusetts when his father became employed at the Norton company.
As a child Whitcomb was fascinated by airplanes; he built models and flew them in competitions, always striving to improve their performance. He graduated from Worcester Polytechnic Institute in 1943 with a BS in aeronautical engineering, and promptly gained employment at the Langley Research Center operated by the National Advisory Committee for Aeronautics (NACA) and its successor, NASA.
After World War II, NACA research began to focus on near-sonic and low-supersonic airflow. After considering the sudden drag increase which a wing-fuselage combination experiences at somewhere around 500 mph (800 km/h), Whitcomb concluded that "the disturbances and shock waves are simply a function of the longitudinal variation of the cross-sectional area" – that is, the effect of the wings could be visualized as equivalent to a fuselage with a sort of midriff bulge whose frontal area was the same as that of the wings. Since the wings could not be dispensed with in the actual case, the alternate to removing the "bulge" would be to decrease the fuselage's cross-section near the wings. This became known as the area rule, which allowed a significant reduction in the drag felt by airplanes near the speed of sound. Its impact on aircraft design was immediate: the prototype Convair YF-102, for example, was found not to be capable of exceeding the speed of sound in level flight. This was rectified by re-sculpting the fuselage. For his insight, Whitcomb won the Collier Trophy in 1954.