In abstract algebra, a residuated lattice is an algebraic structure that is simultaneously a lattice x ≤ y and a monoid x•y which admits operations x\z and z/y, loosely analogous to division or implication, when x•y is viewed as multiplication or conjunction, respectively. Called respectively right and left residuals, these operations coincide when the monoid is commutative. The general concept was introduced by Ward and Dilworth in 1939. Examples, some of which existed prior to the general concept, include Boolean algebras, Heyting algebras, residuated Boolean algebras, relation algebras, and MV-algebras. Residuated semilattices omit the meet operation ∧, for example Kleene algebras and action algebras.
In mathematics, a residuated lattice is an algebraic structure L = (L, ≤, •, I) such that
In (iii), the "greatest y", being a function of z and x, is denoted x\z and called the right residual of z by x. Think of it as what remains of z on the right after "dividing" z on the left by x. Dually, the "greatest x" is denoted z/y and called the left residual of z by y. An equivalent, more formal statement of (iii) that uses these operations to name these greatest values is
(iii)' for all x, y, z in L, y ≤ x\z ⇔ x•y ≤ z ⇔ x ≤ z/y.
As suggested by the notation, the residuals are a form of quotient. More precisely, for a given x in L, the unary operations x• and x\ are respectively the lower and upper adjoints of a Galois connection on L, and dually for the two functions •y and /y. By the same reasoning that applies to any Galois connection, we have yet another definition of the residuals, namely,