Reduced instruction set computing, or RISC (pronounced 'risk', /ɹɪsk/), is a CPU design strategy based on the insight that a simplified instruction set provides higher performance when combined with a microprocessor architecture capable of executing those instructions using fewer microprocessor cycles per instruction. A computer based on this strategy is a reduced instruction set computer, also called RISC. The opposing architecture is called complex instruction set computing (CISC).
Various suggestions have been made regarding a precise definition of RISC, but the general concept is that of a system that uses a small, highly optimized set of instructions, rather than a more versatile set of instructions often found in other types of architectures. Another common trait is that RISC systems use the load/store architecture, where memory is normally accessed only through specific instructions, rather than accessed as part of other instructions like add
.
Although a number of systems from the 1960s and 70s have been identified as being forerunners of RISC, the modern version of the design dates to the 1980s. In particular, two projects at Stanford University and University of California, Berkeley are most associated with the popularization of this concept. Stanford's design would go on to be commercialized as the successful MIPS architecture, while Berkeley's RISC gave its name to the entire concept, commercialized as the SPARC. Another success from this era were IBM's efforts that eventually led to the Power Architecture. As these projects matured, a wide variety of similar designs flourished in the late 1980s and especially the early 1990s, representing a major force in the Unix workstation market as well as embedded processors in laser printers, routers and similar products.